Роль нуклеотидов в организме
Нуклеотиды в клетке выполняют ряд важнейших функций:
• используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);• участвуют во многих обменных процессах в клетке;• входят в состав АТФ – главного источника энергии в клетках;• выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);• выполняют функцию биорегуляторов;• могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).
Нуклеотид – это мономерная единица, образующая более сложные соединения – нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.
История открытия ДНК
Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.
Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки – лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.
Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).
Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.
Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.
О строении
Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.
Некоторые молекулы такого плана организм использует очень активно, другие — редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.
Логические элементы
Рисунок 8. Идея логического элемента «И», написанного на языке ДНК. Синим цветом выделены последовательности, принадлежащие коду логического элемента. Коричневым цветом выделены целевые фрагменты ДНК или РНК, которые элемент призван обнаружить вместе. а — Логический элемент состоит из четырех коротких фрагментов ДНК, один из которых является молекулярным маяком. б — Только в присутствии обеих целевых последовательностей части логического элемента гибридизуются полностью и подается флуоресцентный сигнал. Для упрощения схемы нуклеотидный код каждой цепи не указан.
, рисунок адаптирован
Рисунок 9. Идея логического элемента «ИЛИ», написанного на языке ДНК. Синим цветом выделены последовательности, принадлежащие коду логического элемента. Коричневым цветом выделены целевые фрагменты ДНК или РНК, которые элемент призван обнаруживать. а — Логический элемент состоит из четырех коротких фрагментов ДНК, один из которых является молекулярным маяком. б и в — В присутствии любой из целевых последовательностей три из четырех частей логического элемента, включая маяк, гибридизуются между собой, и подается флуоресцентный сигнал. Для упрощения схемы нуклеотидный код каждой цепи не указан.
, рисунок адаптирован
В каждую лунку планшета вносится определенный логический элемент ДНК, а затем в каждую — одна и та же проба. а — Слева: теоретически ожидавшийся результат; справа: окраска лунок в зависимости от того, какая проба была добавлена на планшет. б — Схема нанесения логических элементов на планшет. в — Принцип окрашивания каждого логического элемента в зависимости от того, какая проба вносится в ту же лунку, где он находится.
, рисунок адаптирован
Расшифровка днк. Как понять результаты анализа ДНК
Проведение генетической экспертизы на сегодняшний день является самым востребованным видом современных исследований , который обеспечивает максимальную точность результата. Так, в лаборатории ДНК тестов ДТЛ исследования проводятся с наивысшей вероятностью результата – 99,999999%. Процентное значение указывается в экспертном заключении. При этом клиентов часто интересует — как понять анализ ДНК, что он означает? Здесь все зависит от особенностей его проведения, поскольку тестирование проводят для установления :
- отцовства и другой степени родства;
- принадлежности к конкретному этносу;
- пола ребенка, его резус-фактора;
- вероятности развития наследственных заболеваний;
- склонности к занятию спортом;
- идентификации личности человека.
Как расшифровать ДНК анализ
Несмотря на то, что генетические исследования в Москве стали доступны, а их результаты широко используются в медицине, юридической сфере и криминалистике, они представляют собой достаточно сложную технологию. Проводится расшифровка анализа ДНК путем секвенирования. Эта процедура представляет собой установление последовательности микроструктур, которые представляют собой множественные буквенные значения.
Чтобы изучить молекулу, ее выделяют из образца биоматериала, после этого делают многочисленные копии, которые распределяют на фрагменты для проведения исследования. Азотистые соединения, которые составляют генетическую формулу, обрабатывают флуоресцентной краской . В процессе лазерного воздействия эти участки станут заметны.
На сегодняшний день применяется усовершенствованные методики анализа, которые позволили удешевить и ускорить процедуру . Самые популярные виды секвенирования — терминации цепи, лигирование, анализ одиночных молекул.
После проведения тестирования заказчик получает заключение с процентным выражением результата. Например, при ДНК на установление отцовства положительный ответ дается с наивысшим показателем 99,999999%. В данном случае 0,01% остается на тот случай, что у каждого человека теоретически может быть близнец , который имеет аналогичный хромосомный набор. Если факт отцовства не подтверждается, то результат указывается со 100%-ой вероятностью.
Анализ ДНК: как расшифровать и понять
Лаборатория ДНК тестов ДТЛ – лидер в области генетических экспертиз в Москве , предлагает все виды тестирования. К услугам клиентов – современная сертифицированная лаборатория, оснащенная оборудованием мирового уровня «Applied Biosystems», и штат экспертов с 15-летним практическим опытом работы. Мы гарантируем каждому клиенту:
- персональный подход и конфиденциальность;
- комфортные условия;
- минимально возможные сроки проведения анализа;
- ценовая доступность услуг.
Если Вы хотите понять анализ ДНК, можете обратиться за бесплатной консультацией к нашим специалистам по телефону или задать свой вопрос на сайте. Вы получите понятный, развернутый ответ в самое ближайшее время.
Состав нуклеиновых кислот
В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК – рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.
Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания наследственной информации с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.
По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.
К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.
Как читается генный код?
Сегодня вычисляется не только масса молекулы ДНК — можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК – это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина – урацил. Кроме того, РНК одноцепочная.
История изучения
Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.
В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.
В декодировании записанной в них информации участвуют так называемые транспортные кислоты.
Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.
Чем ДНК отличается от РНК?
По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара.
Но разница в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.
Но в отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом.
Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин. Но в РНК вместо тимина присутствует его разновидность – урацил.
Уровни организации наследственной информации
Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.
Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.
Разделяют несколько видов генов:
- по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
- по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.
Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка.
А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.
Два факта об антиДНК
Кроме того, антиДНК появляется в крови в связи со следующими причинами:
- миеломной болезни;
- СКВ, критерием диагноза которой является получение положительного результата исследования;
- правовирусной инфекции;
- лекарственно инуцированной СКВ;
- ВИЧ;
- синдроме Шегрена;
- цитомегаловирусной инфекции;
- синдроме Шарпа (смешанном заболевании соединительной ткани);
- инфекционном мононуклеозе;
- ревматоидном артрите;
- первичном билиарном циррозе;
- системной склеродермией;
- вирусном гепатите С;
- вирусном гепатите В.
Поэтому кровь на антитела к двуспиральной ДНК берут довольно часто.
Редупликация нуклеотидной цепи
Способность молекулы ДНК удваиваться — ее уникальное свойство, обеспечивающее передачу наследственных признаков от одних поколений живых организмов — к другим (последующим). Редупликация дезоксирибонуклеиновой кислоты — это ее удвоение. Происходят следующие процессы и явления:
- Молекула ДНК перед клеточным делением раскручивается с одной стороны спирали.
- Расщепление цепи на две части происходит под воздействием катализатора (фермента).
- Вдоль каждой половины выстраиваются свободные нуклеотиды из клетки, образуя вторую цепь.
- Воссоздание удвоенной цепи происходит по принципу комплементарности.
- Возникают две молекулы ДНК с одинаковой последовательностью мономеров.
Значение ДНК в медицине
Открытие ДНК в медицине, расшифровка этой кислоты – это события, которые трудно преувеличить. Большая часть современных прорывных технологий и исследований прямо или косвенно базируются на этом фундаментальном для науки открытии. Не знай мы про гены, не было бы многих современных методов лечения и диагностики, многих технических изобретений. По сути, не было бы и генетики, как полноценной самостоятельной науки. Застопорилось бы изучение клетки и того, как она функционирует. А без этих знаний и множество открытий в этой области были бы не возможны.
На сегодняшний день знания о генах помогают многим людям:
- Узнать о заболевании намного раньше наступления первых симптомов. Лечение на сверхранней стадии всегда более успешно.
- Найти своих близких и родных. Узнать много подробностей о своём роде.
- Благодаря открытию носителя наследственной информации у медицины появился шанс побороть наследственные заболевания, которые ранее казались неизлечимыми.
- Вполне возможно, что именно благодаря этому открытию человечество решит задачу многих тысячелетий и найдет эликсир бессмертия, или таблетку от всех болезней.
Важные замечания
Анализ крови на антитела к двуспиральной ДНК проводится вместе с нижеприведенными исследованиями:
- бета-2-микроглобулином;
- общим анализом крови;
- антицентромерными антителами;
- общим анализом мочи;
- антигистоновыми антителами;
- печеночными пробами (щелочная фосфатаза, билирубин, ГГТ, АСТ, АЛТ);
- ревмопробами (АСЛО, С-реактивный белок, ревматоидный фактор, скорость оседания эритроцитов);
- антителами к цитруллиновому пептиду (АЦЦП);
- антинуклеарными антителами (ANA). Являются самыми хорошо изученными аутоантителами наряду с ревматоидным фактором. Были открыты в 1957 г., и одновременно исследователи доказали связь с СКВ. При этом антитела к двуспиральной ДНК повышены;
anti-SSB и anti-SSA антителами;
anti-SCL-70 антителами;
anti-nRNP антителами;
- anti-Sm антителами;
- anti-sp100 антителами.
Два факта об антиДНК
Кроме того, антиДНК появляется в крови в связи со следующими причинами:
- миеломной болезни;
- СКВ, критерием диагноза которой является получение положительного результата исследования;
- правовирусной инфекции;
- лекарственно инуцированной СКВ;
- ВИЧ;
- синдроме Шегрена;
- цитомегаловирусной инфекции;
- синдроме Шарпа (смешанном заболевании соединительной ткани);
- инфекционном мононуклеозе;
- ревматоидном артрите;
- первичном билиарном циррозе;
- системной склеродермией;
- вирусном гепатите С;
- вирусном гепатите В.
Значение открытия
За наследственность отвечает ДНК. Расшифровка дает возможность изучения развития и жизни любого земного организма, и вмешательство врачей сегодня может немного изменить заложенные в молекуле процессы.
При наличии кода ДНК расшифровка его позволит врачу определить различные болезни, которые могут возникнуть у человека, прогнозировать их течение и подбирать лекарственные средства.
И по сей день еще не произошло полного понимания того, что значит раскодирование молекулы. Благодаря этому, например, стало известно, что неандертальцы умели разговаривать и не болели шизофренией и синдромом Дауна.
Молекулы ДНК у людей фактически одинаковы. Замена азотистых оснований в них может привести к мутациям и болезням. Хотя иногда наблюдается лишь предрасположенность к ним, и если человек не будет подвержен вредным привычкам, он сможет избежать их появления.
Медики знают уже пять тысяч заболеваний (многие из которых приводят к инвалидности), которые передаются посредством ДНК. Расшифровка молекулы позволит предупредить людей о предрасположенности. Тогда человек будет предпринимать профилактические меры, чтобы болезнь не развивалась. Так как генотип человека с возрастом не изменяется, достаточно один раз сдать анализы.
Технологии сегодня помогают выявить способности человека вплоть до вычисления оптимальных физических нагрузок, эффективного наращивания мышц и быстрого сброса лишних килограммов.
Изучение ДНК развивает уровень микробиологии, которая занимается вирусами, грибами и бактериями, вызывающими инфекции у человека. Благодаря этому такие отрасли, как биофармацевтика, пищевое, косметическое производство, экологический мониторинг и другие получают новый толчок для своего развития.
Расшифровка полученных данных
Расшифровка данных заключается в кропотливом сравнении положения генов и их формы с базой данных эталонов. Так выявляется, как ген ведет себя, и к каким последствиям приводит его индивидуальная деятельность и деятельность в связке с другими генами.
Расшифровка занимает больше время, чем другие этапы анализа.
Диагностика заболеваний
Наверно наиболее полезное для людей и перспективное направление генетических исследований – это диагностика заболеваний на ранних стадиях, и даже раньше. На сегодняшний день тестирование позволяет:
- Выявить вариабельные гены. Это, когда сам человек не подвержен болезни, но может передать её следующему поколению.
- Определить износ клеток — клеточное старение. Основным фактором, который влияет на возможность клетки к делению, является длинна теломеров внутри неё. С каждым последующим делением теломеры становятся немного короче, и так до момента утраты клеткой способности к делению. Есть способы, которые позволяют удлинить теломеры и тем самым продлить свою молодость.
- Провести анализ на общее состояние здоровья для составления индивидуальной диеты и графика нагрузок. Тестирование позволяет выявить аллергены и противопоказания.
- Выявить предрасположенность к самым опасным и распространённым заболеванием тысячелетия, и провести предупреждающие профилактические мероприятия.
Родство
Самый востребованный среди обычных людей анализ ДНК – это тестирование на отцовство. Не редко к нему прибегают одинокие матери, что бы привлечь отца к ответственности и заставить выплачивать алименты. Бывает, что положительный результат исследований дает право претендовать на получение наследства.
Но этим возможности исследований не ограничиваются:
Это бывает важно, например, для принятия решения о донорстве органов.
Генетическая экспертиза
ДНК экспертиза личности это почти 100%ый способ установить личность человека по мельчайшим биообразцам его тканей и физиологических жидкостей. Чаще всего это необходимо в криминалистике для установления всех участников трагедии, выяснении личности предполагаемого убийцы, или жертвы, если ни как иначе определить личность не представляется возможным. Бывает, что вследствие травм, или болезней, человек может потерять ориентацию и забыть где он живет, и как его звать – в таких случая ДНК-анализ позволяет определить, кто это и найти родственников данного человека.
ДНК, ХРОМОСОМЫ И ГЕНЫ
Весь механизм управления развитием и активностью организма заключен в дезоксирибонуклеиновой кислоте (ДНК), из которой состоят хромосомы клеточных ядер и их основные функциональные единицы — гены. ДНК состоит из двух длинных параллельных макромолекулярных цепочек, свернутых в виде спирали; молекулы ДНК состоят из трех основных элементов: фосфатных молекул, молекул сахара — дезоксирибозы и четырех азотистых оснований: аденина, гуанина, тимина и цитозина. Каждая цепочка ДНК состоит из последовательных звеньев, которые называются нуклеотидами: волокна азотистых оснований соединены водородными связями друг с другом таким образом, что двойная спираль ДНК по форме похожа на винтовую лестницу.
Деление всех клеток организма, за исключением клеток зародыша, происходит путем удваивания хромосомного материала, поскольку каждая из дочерних клеток должна получить точную копию ДНК от материнской клетки. В ходе этого процесса, который называется репликацией, две цепи ДНК разъединяются и благодаря воздействию особого фермента формируются две новые комплементарные цепи. Каждая исходная цепь служит прообразом для новой цепи, в которой азотистые основания соединяются (соединяться между собой могут только аденин и тимин или цитозин и гуанин), — в результате каждая из двух цепей получается дополненной. Таким образом, воссоздаются две идентичные макромолекулы ДНК, поскольку каждая цепь состоит из исходной и новой цепи.
Нуклеиновые кислоты – полимерные молекулы
Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:
- пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
- фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
- азотистого основания.
Строение нуклеотида
Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).
Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.
Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований
Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.
В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:
- 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
- 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).
Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.
Молекула ДНК
1. Бделлоидные коловратки – это микроскопические животные, которые на протяжении 80 миллионов лет оставались исключительно самками. Они размножаются, заимствуя ДНК других животных.
2. Если бы вам пришлось ежедневно по 8 часов печатать по одному слову в секунду, вам бы потребовалось 50 лет, чтобы напечатать геном человека.
3. Осы бракониды вместо яда вводят своим жертвам вирус, который подавляет иммунную систему и позволяет паразитической личинке осы расти внутри жертвы. Ученые обнаружили, что этот вирус не похож ни на один другой вирус на Земле. Ему больше 100 миллионов лет, и он, судя по всему, слился с ДНК осы.
4. Если вы вдруг перенесете трансплантацию костного мозга, в ДНК вашей крови будет присутствовать ДНК донора, что в прошлом приводило к ложным арестам.
5. У родных братьев и сестер 50 % общих генов, как и у родителей с детьми.
6. ДНК повреждается около 1 миллиона раз за день в каждой клетке нашего тела. К счастью, у нашего организма существует сложная система ее восстановления. Если бы этого не было, это бы приводило к раку или гибели клеток.
7. Если дело касается беспозвоночных, то дождевые черви являются нашими ближайшими родственниками. У нас больше общего ДНК, чем с тараканами и даже осьминогами.
8. Согласно ученым, у четырех семей в Исландии обнаружено ДНК, встречающееся только у коренных американцев. Свидетельства указывают на то, что викинги привезли коренную американку обратно в Европу около 1000 лет назад.
9. На международной космической станции есть жесткий диск, названный «диск бессмертия«. Он содержит ДНК людей, таких как Лэнс Армстронг и Стивен Хокинг на случай всемирной катастрофы.
10. Брук Гринберг – девушка, которая всю жизнь выглядела, как ребенок, умерла в возрасте 20 лет. Ученые считают, что ее ДНК может стать ключом к биологическому бессмертию.
Стоимость исследования
Сколько стоит ДНК-анализ? Стоимость тестирования, как и сроки его проведения, зависит от многих факторов: от самого вида теста до объемов расшифровываемых данных (цена расшифровки) и ценовой политики конкретной лаборатории. По сути, цена складывается почти так же, как и сроки проведения исследований, что описано далее в данной статье. В среднем цена может колебаться от нескольких до десятков тысяч рублей.
Кто оплачивает
На сегодняшний день, в РФ нет государственных программ, проектов и благотворительных фондов, которые могут оплатить ДНК-анализ за вас. Единственная такая возможность возникает, если суд сам решает, что необходимо его проведение. В таком случае анализ оплачивается из областного бюджета.
Сроки
Сроки проведения исследований и получения готового результата зависят они нескольких факторов, и оговариваются индивидуально:
- Объем исследований может начинаться от простого поиска инфекции в биообразце то комплексного исследования всего генома. Соответственно могут варьироваться и сроки работы.
- На сроки получения результатов может повлиять наличие у клиники свой лабораторией, оборудованной всей необходимой техникой, или она заказывает анализ в другой лаборатории. При заказе ДНК-теста в нашей клинике проблемы с лабораторией и оборудованием нет – наша лаборатория оснащена по последнему слову техники.
- Загруженность лаборатории и специалистов так же может повлиять на сроки получения результата.
В среднем на проведение исследований и оформления их в готовый документ со всеми сопутствующими рекомендациями уходит 3-4 недели. Но, в зависимости от факторов выше, точные сроки оговариваются индивидуально.
Что нужно для анализа
Провести тестирование можно на любом образце тканей человека, но самым простым и распространённым способом получения биоматериала для исследований является забор слюны в ротовой полости клиента. Забор можно произвести самостоятельно в домашних условиях с помощью обычной ватной палочки. Во избежание возможных ошибок при анализе необходимо соблюдать стерильность образца: ватную палочку для сбора слюны лучше всего взять новую из только что распакованной упаковки, конверт для пересылки и хранения образца не должен быть полиэтиленовым или с полиэтиленовыми вставками.
Проведение процедуры
Проведение процедуры анализа, заказанного в нашей клинике, происходит по соответствующей лицензии в стерильной лаборатории, оборудованной новейшей техникой. Открылась наша лаборатория относительно недавно (в 2018 году) и предоставляет самые современные услуги по ДНК-тестирования, доступные на сегодняшний день для мировой практики.
Расшифровка
Наибольший период от всего затраченного на тестирование времени занимает расшифровка результатов. Поскольку речь идет об исследовании микроструктур, что уже осложняет процесс изучения образца, интересующие врачей гены подкрашиваются флуоресцентной краской, а после облучаются направленным лучом лазера – таким образом, добиваются более-менее четкой и различимой картинки. В зависимости от самого теста гены сравниваются с эталонами в базе данных, и, исходя из сходств и различий, делаются итоговые выводы и составляются рекомендации.
Заключение
Подводя итог всему вышесказанному, хотелось бы отметить, что мир молекул РНК и ДНК, в отрыве от привычной для нас функции «передачи информации», таит в себе множество интересных возможностей и неожиданных проявлений. Более того, многогранность этих возможностей позволяет рассматривать их с совершенно различных сторон — в частности, как и было представлено в этой статье, работа механизмов на основе нуклеиновых кислот может быть представлена даже в виде функционирования реально существующего языка программирования.
Наличие подобных ракурсов, не лишенных изрядной доли смысла, возможно, станет интересным для людей самых различных профессий и специальностей, что станет причиной вовлеченности в изучение основы нашего существования все большего и большего числа людей.
В самом начале данной статьи уже упоминалось, что подобный взгляд, да и сам термин «ДНК-программирование» являются неотъемлемыми составляющими одной большой прикладной науки, носящей название синтетической биологии. Изучить живое, «взломать» его программный код, чтобы понять, как это живое работает, и на основе полученных знаний создать нечто новое — задача целого ряда дисциплин и уровней, начиная от организменного и заканчивая молекулярным и даже атомным. Наука не стоит на месте и, возможно, уже в самом ближайшем времени мы сможем «перепрограммировать» самих себя.